How do you design a genetic algorithm
to optimize geometry?

National Aeronautics and Space Administration

Genetic Algorithm Optimization of Inlet Geometry for a Hypersonic Jet Engine with Mode Transition

NASA y F

What are the alleles?

- coordinates of key points along the inlet walls

- “bias” numbers used to determine the shape of the wall between the key points
- “tightness” numbers also used to determine wall shape between the key points

inlet profile at bias = -20
for the bumped-out section,
bias = 0 elsewhere

bias = 20 for the same section,
bias = 0 elsewhere

tightness = -10
for the same section,
tightness = 0 elsewhere

tightness = 10
for the same section,
tightness = 0 elsewhere

tightness = 20
for the same section,
tightness = 0 elsewhere

How does crossover work?

- Setup: The chromosomes are lists of the x and y coordinates of key points
along the walls, followed by tightness values for each wall section where
Hermite interpolation is used (as opposed to linear), and then bias values for
each of those sections. There is a set probability that any two parents will
experience crossover.

- Problem: That means the standard technique--choosing a point along the
chromosome and swapping everything after that between the two parents--
won't mix thing up like it would if the alleles were arranged more randomly
along the chromosome.

- Solution: When crossover occurs, go through each allele and decide randomly
whether or not it will be swapped between parents. The individuals that result
from this series of swaps are the two children.

How does mutation work?

- Setup: Mutation happens to the children after they are produced by crossover.
There is a set probability that a given child will experience mutation.

- Problem: The alleles aren't binary, so a mutation can’t mean simply changing
a random digit in the chromosome from a 0 to a 1 or vice versa.

- Solution: When mutation occurs, choose a random allele on that individual
and change its value by a random amount of up to 5 inches if it's a coordinate,
or up to 0.5 if it's a bias or tightness value.

Other characteristics of the algorithm

- Elitism: The best individual (the one with the highest total pressure recovery)
in the latest generation automatically goes into the next generation, unaltered
by crossover or mutation.

- Constraints: An inlet’s lower wall must not intersect its upper wall, and the lip
of its cowl must come far enough forward that it catches the shock produced
by the lip of the ramp.

- Redos: If a new individual violates a design constraint, the process that
produced the individual (crossover, mutation, or random generation in the
case of the first generation) is redone until a functioning individual is produced.

WWw.nasa.gov

Ashley Micks
i A and

MIT

Q! 9

What else is needed to run the algorithm?

Overflow

- Overflow requires specific input files for it to do the calculations needed to
find an inlet’s total pressure recovery.

- Grid: Overflow needs a 3D mesh grid representing the inlet's geometry, written
in Plot3D format (a text file with the grid’s dimensions followed by the x, y, and
z coordinates of all the points where the gridlines intersect).

- Boundary conditions: Another input file needs to tell Overflow what the
conditions at the borders of the grid are like--whether there’s friction, whether
there can be flow though the border, etc.

- Overflow doesn't output the total pressure recovery. It outputs density,
velocity, and a list of other values that the algorithm must use to calculate total
pressure recovery.

Grid generation

- A program separate from the algorithm generates a Plot3D grid for
Overflow, using the information from a given inlet’'s chromosome.

- Interpolation: Since the chromosome only has coordinates for certain points
on the inlet walls, the grid generator must interpolate between them in order
to find piecewise functions defining the walls. Some wall sections are linear,
but others are curved. The curved sections use Hermite interpolation, which
finds a cubic function that fits the given points while accounting for the bias
and tightness for that section.

- Gridline concentration: The grid needs to be finer where the flow is more
complicated. This includes at and after the lips of the cowl and ramp, and
along the walls. The lips are where shock waves begin, and the walls are

where the boundary layers and flow separation occur.

This is part of the baseline inlet design’s grid. Note the concentration of gridlines near
the walis and the ramp lip, where the lower wall changes slope, A grid at least this
dense is necessary where the flow cannot be approximated as uniform

approximately uniform flow
cowl lip

X

bend in ramp

ramp lip

A full-length view of the baseline design, showing appropriate grid concentration
along the inlet

Dr. Meng-Sing Liou
Staff Mentor, NASA-GRC Aerospace Engineer, Research and Technology

Why is geometry important?

- Wall angles affect shock waves, and a stronger
shock has a greater increase in entropy across it,
which means a greater loss of total pressure and
ability for the flow to do work.

- Geometry provides passive control of boundary
layer thickness and shock strength, which are
key factors in total pressure loss.

- Flow separation due to poorly shaped walls can
be catastrophic for total pressure recovery.

Work done so far

- Researched genetic algorithms and the hypersonic inlet to
be optimized

- Researched how to code in Fortran (no previous experience)

- Installed Force and EnSight, after discovering a bug in one
version of EnSight

- Set up an account on the Columbia supercomputer

- Installed Overflow on Columbia

- Ran test cases in Overflow and EnSight to gain familiarity
with the programs

- Wrote a grid generation program

- Refined the grid generation program through plotting on
EnSight

- Planned methods for crossover, mutation, and other
processes the algorithm would perform

- Wrote the genetic algorithm, except for the call to Overflow
to find the total pressure recovery

Work yet to do

- Learn how to call Overflow from a Fortran program

- Gain experience running small batch jobs to Columbia, to
prepare for the large batch jobs needed to find total
pressure recovery for each of about 100 individuals per
generation for about 40 generations

- Upload all necessary programs and input files to Columbia

- Run the algorithm

- Analyze the results, looking at the individuals produced and
the “optimal” individual with the best total pressure recovery
in the last generation

- Refine the algorithm, grid generator, and input files as
necessary

Acknowledgments
Special thanks to Meng-Sing Liou, May-Fun Liou, Dave
Saunders, MaryJo Long-Davis, Jay Horowitz, and Mary
Vickerman for their mentorship and support. Thanks also
to the Massachusetts Space Grant Consortium.

f W Massachusetts
il I Institute of
Technology



